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The relativistic instabilities of electromagnetic ion cyclotron waves driven by MeV ions are analytically and
numerically studied. As caused by wave magnetic field and in sharp contrast to the electrostatic case, interest-
ing characteristics such as Alfvénic behavior and instability transition are discovered and illuminated in detail.
The instabilities are reactive and are raised from the coupling of slow ions’ first-order resonance and fast ions’
second-order resonance, that is an essential extra mechanism due to relativistic effect. Because of the wave
magnetic field, the nonresonant plasma dielectric is usually negative and large, that affects the instability
conditions and scaling laws. A negative harmonic cyclotron frequency mismatch between the fast and slow
ions is required for driving a cubicsand a coupled quadraticd instability; the cubicssquared root scaling of the
peak growth rate makes the relativistic effect more important than classical mechanism, especially for low fast
ion density and Lorentz factor being close to unity. For the cubic instability, there is a thresholdsceilingd on the
slow ion temperature and densitysthe external magnetic field and the fast ion energyd; the Alfvén velocity is
required to be low. This Alfvénic behavior is interesting in physics and important for its applications. The case
of fast protons in thermal deuterons is numerically studied and compared with the analytical results. When the
slow ion temperature or densitysthe external magnetic field or the fast ion energyd is increasedsreducedd to
about twiceshalfd the thresholdsceilingd, the same growth rate peak transits from the cubic instability to the
coupled quadratic instability and a different cubic instability branch appears. The instability transition is an
interesting new phenomenon for instability.
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I. INTRODUCTION

Electromagnetic cyclotron instability is an important
mechanism in magnetized plasmas and is an active research
area in plasma physics and wave dynamicsf1–4g with appli-
cations for coherent radiationf1,2,5g, heatingf6,7g, current
drive f8–10g, and diagnosticf11g in laboratoryf12,13g, in-
dustrial f14g, spacef15,16g, and astrophysicalf17g plasmas.
While the relativistic effect has been well known for five
decades to be essential for electromagnetic electron cyclo-
tron instability f1,2,18–22g, the importance of relativity for
ion cyclotron instability is discovered for only one decade
f23–30g because the Lorentz factor of ions is very close to
unity in typical plasmas due to the large ion mass. Indeed,
the fact that the relativistic effect with a very small Lorentz
factor −1 can play an essential role to affect fast ion dynam-
ics significantly f25,27,29,30g is very interesting in funda-
mental physics. Furthermore, the polarization of the waves
studied so far is electrostaticf23–30g; that is, the wave vector
is parallel to the electric field and there is no wave magnetic
field.

The dynamics and stability of fast ions produced in fusion
reactions are critical for maintaining the burning of plasmas
in fusion reactorsf31–33g. The fast ion cyclotron emissions
measured in reactorsf34–38g provide a means to understand
the fast ions’ dynamics. Electromagnetic ion cyclotron insta-
bility f39,40g, relativistic electrostatic ion cyclotron instabil-
ity f23,24,28g, and magnetoacoustic instabilityf41,42g have

been proposed to explain the emissions. The electromagnetic
ion cyclotron instability is excited by the fast ions due to
inversed Landau dampingf39g, without considering relativ-
ity. In fusion reactors, the fast ion density is much lower than
that of the slow ions. Because the growth rate is proportional
to the fast ion density, the electromagnetic ion cyclotron in-
stability is weakf39g. Also, since the inversed Landau damp-
ing requires an exact resonance, the fast ions may only re-
main in resonance within a small part of their circulation
trajectory such that the effective fast ion density can be a few
orders smallerf40g. On the other hand, the relativistic elec-
trostatic ion cyclotron instability is driven by the fast ions
through the coupling of slow ions’ first-order resonance and
fast ions’ second-order resonance in the susceptibility at the
same direction of the wave vector and the electric field.
When the harmonic cyclotron frequency mismatch of fast
and slow ions is negativese.g., fast protons in thermal deu-
teronsd, these two cyclotron streams in gyrophase are
coupled to excite a cubic instability and a coupled quadratic
instability. When it is positivese.g., fast alphas in thermal
deuteronsd, a decoupled quadratic instability can be driven
only at high harmonics where the slow ions are cold.

In this paper, the relativistic electromagnetic ion cyclotron
instability and its physics are studied. The dispersion relation
for electromagnetic wave propagating across an external
magnetic field is derived from relativistic kinetic theory and,
then, is analyzed for the wave frequency near the harmonic
ion cyclotron frequencies of the plasmas consisting of fast
ions, Maxwellian slow ions, and electrons. Both a cubic in-
stability and a quadratic instability raised from the coupling
offast and slow ion cyclotron harmonics are found when the
frequency mismatch is negative; due to the wave magnetic*Electronic address: chenkr@mail.ncku.edu.tw
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field, the decoupled quadratic instability cannot be driven
even at high harmonics as in contrast to the electrostatic
case. The peak growth rate is scaled as the cubic or square
root of the fast ion density. This makes the relativistic effect
more important than the classical inversed Landau damping
for driving electromagnetic ion cyclotron instability. Also
due to the wave magnetic field, the characteristics and con-
ditions of the relativistic electromagnetic instabilities are
quite different with the electrostatic instability. For example,
the Alfvénic behavior is revealed, that is important for appli-
cations. By moderately changing plasma parameters, we ob-
serve an interesting physical phenomenon; that is, the same
growth rate peak can transit from the cubic instability to the
quadratic instability and then a new cubic branch appears.

The susceptibility and dispersion relation for the electro-
magnetic wave perpendicular to the external magnetic field
will be derived from relativistic kinetic theory in the next
section. Section III is the instability analysis of electromag-
netic ion cyclotron waves in resonance with one fast ion
species and maybe also with a Maxwellian slow ion species.
Section IV is for the numerical studies of fast protons in
thermal deuterons, based on typical plasma parameters. The
discussions and the summary are given in Sec. V.

II. DISPERSION RELATION FROM RELATIVISTIC
KINETIC THEORY

Consider a uniform plasma under an external magnetic

field in thez directionsi.e., BW 0=B0ẑd and an electromagnetic
wave with its electric field polarized in they direction propa-
gating along thex direction with its wave vectorkW =kx̂. The
dispersion relation for this electromagnetic wave in the
plasma is given as

1 −
k2c2

v2 + x = 0, s1d

wherec is the speed of light,v is the wave frequency,x is
the susceptibility constant in they direction. Derived from
the Vlasov equation and Maxwell equations, the susceptibil-
ity is f13g

x = o
species
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dPz

vp
2

v

fJn8skrdg2P'
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where the susceptibility constant includes all species of the
plasma,n is the harmonic number,P'sPzd is the perpendicu-
lar sparalleld momentum,vp=s4pn0q

2/gmd1/2 is the plasma
frequency,n0 is the plasma density,q is the charge,g is the
Lorentz factor,m is the rest mass,vc=Vc/g is the cyclotron
frequency,Vc=qB0/mc is the nonrelativistic cyclotron fre-
quency,Jn8skrd is the derivative of Bessel function of first
kind of ordern with the parameterkr, r=v' /vc is the gy-
roradius,v' is the perpendicular gyrovelocity, andf0 is the
distribution function.

Equations2d is integrated by part and substituted into Eq.
s1d to yield the relativistic dispersion relation for the electro-
magnetic waves as

0 = 1 −
k2c2
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The term within parentheses with subscript “relat” is due to
the inclusion of relativity. Mathematically, this term comes
from the derivative of the cyclotron frequency in the reso-
nance condition because of ]g /]P'=P' / sgm2c2d
f1,2,23,28g. Physically, the inclusion of the relativistic Lor-
entz factor in the cyclotron frequency provides a mechanism
for the energy exchange between the plasma and the wave
through the relativistic cyclotron resonancef1,2,23,28g.

If the plasma consists of fast ions as well as Maxwellian
slow ions and electrons, the dispersion relation for the elec-
tromagnetic wave with a frequency much lower than the
electron cyclotron frequency becomes

0 = 1 −
k2c2
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where

hssld = Fs2Issld
l

+ 2lIssld − 2lIs8sldGe−l s5d

>
s2lusu−1

2usuusu!
if l ! 1, s6d

h−s=hs; s s,d is the harmonic number of the slowsfastd ions;
the subscriptse, s, and f are for electron, slow, and fast ions,
respectively;T is the slow ion temperature assumed to be
low so thatgs.1; l=sk2T/msVs

2d=k2rs
2; rs is the Larmor

radius of the thermal slow ions;Is is the modified Bessel
function of first kind of orders; Is8 is the derivative ofIs;
ks¯dl=ed3Pf0s¯d is averaged over a momentum distribu-

tion; for an isotropic distributionf0=dsPW −P0r̂d /4pP0
2 se.g.,

fast ions produced by fusion reactiond,

kJ,
2l =

1

2
E

0

p

sinuduJ,
2skr0 sinud, s7d
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kk2r2J,
2l =

1

2
E

0

p

sin3 uduk2r0
2J,

2skr0 sinud; s8d

for a beam distributionf0=dsP'−P'0ddsPz−Pz0d /2pP'0

se.g., neutron beam injectiond,

kJ,
2l = J,

2skr'0d, s9d

kk2r2J,
2l = k2r'0

2 J,
2skr'0d; s10d

the fast ion Larmor radiusr'0=P'0/mfVcf=v'0/vcf; and
r0=P0/mfVcf=v0/vcf.

III. CYCLOTRON INSTABILITY ANALYSIS FOR ONE
FAST ION SPECIES

Without loss of generality, we will consider one fast ion
species with its,th harmonic cyclotron frequency in reso-
nance with the wave frequency and maybe also with thesth
harmonic cyclotron frequency of one of the slow ion species
si.e.,,vcf>v>svcsd. The relativistic term of the slow ion in
Eq. s4d can be neglected if the slow ion temperature is low.
Thus the dispersion relation for the electromagnetic ion cy-
clotron waves in the plasma can be written as

0 = A +
D

sv − ,vcfd + D
+

B

v − ,vcf
+

C

sv − ,vcfd2 , s11d

where

A = 1 −
k2c2

v2 +
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2
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2 − o
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2
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2 h1, s12d
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vpf

2 vcf
2
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2 l − 2,2kJ,
2lg, s14d

D = −
vps

2

,vcf
hssld, s15d

D = ,vcf − svcs> ,vcfS1 −
sVcs

,Vcf
gD ! ,vcf. s16d

The coefficientA is the nonresonant plasma dielectric that
represents the plasma inertia. The summation inA sums over
all slow ion species whose first harmonic is not in resonance.
The coefficientB is the first-order resonance of the fast ion.
The instability driving is from the second-order resonance of
the fast ion due to the relativistic effect, that is with a coef-
ficient C. The slow ion’s resonance is first-order with a co-
efficient D, that represents the resonant slow ion inertia. We
note thatD=0 if no slow ion harmonic numbers can satisfy
the resonance condition. The dispersion relation in Eq.s11d
is written in a format being the same as that of the relativistic
electrostatic ion cyclotron wavesf23,28g. But, there are sig-

nificant differences important for determining the instability
characteristics. For the electromagnetic wave, there is an ex-
tra dielectric −k2c2/v2 contributed by the wave magnetic
field in the nonresonant dielectricA. This extra dielectric is a
negative number with its absolute value much larger than
unity due to low wave phase velocity and thus makes the
plasma inertia usually negative and large, that is a negative
effect for driving instabilities. The coefficientC of the elec-
tromagnetic case is proportional to the square of the deriva-
tive of Bessel function in contrast to the square of Bessel
function in the electrostatic case, while the coefficientB in
both cases are related to the derivative of Bessel function.

For instability analysis, the dispersion relation can be re-
written as a cubic algebraic equation of the difference be-
tween the wave frequency and the harmonic fast ion cyclo-
tron frequency; that is,

0 = sv − ,vcfd3 + Psv − ,vcfd2 + Qsv − ,vcfd + R,

s17d

P = D +
B + D

A
, s18d

Q =
BD + C

A
, s19d

R=
CD

A
. s20d

The characteristics of the instability is mainly determined by
P si.e., AD+D, if the fast ion density is much lower than the
slow ion densityd, that indicates the competition between the
harmonic cyclotron frequency mismatch and the resonant
slowion dielectric normalized by the nonresonant plasma di-
electric. The parameterR is the driving parameter defined as
the driving dielectric coefficient of the fast ion second-order
resonance normalized by the nonresonant plasma dielectric
multiplying the frequency mismatch. We consider that the
phase velocity of the wave is much slower than the speed of
light, the Lorentz factor of the fast ions is close to unity, and
the slow ion gyroradius is smallsi.e., l!1d. Thus

A . −
k2c2

,2vcf
2 − o

slow,sÞ1
as

vps
2

,2vcf
2 , s21d

D . − ,vcfdgs1 + amd, s22d

D . −
1

,vcf
S s2

2ss!
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as = S1 −
Vcs

2

,2vcf
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, s24d

am =
dms − dmf

dg
, s25d

where dg=g−1, dm=1−m/Nmp is defined as the normal-
ized mass deficit per nucleon of the ions,N is the nucleon

RELATIVISTIC ELECTROMAGNETIC ION CYCLOTRON… PHYSICAL REVIEW E 71, 036410s2005d

036410-3



number of the ions, andmp is the proton rest mass.

A. Cubic instability

The first case to be studied isAD+D.0 or P.0 si.e.,
uPu! uv−,vcfud. Since bothA and D are negative, this re-
quires the harmonic cyclotron frequency mismatch between
the fast ions and the slow ions being negativesi.e., D,0d. A
cubic instability may be driven due to the coupling of the
second-order fast ion resonance and the first-order slow ion
resonance. Substituting Eqs.s21d–s23d into this equality
yields

0 . AD + D s26d

=
1 + am

,vcf
Fk2r0

2vcf
2

2

+ dg o
slow,sÞ1

asvps
2

−
s2

2ss!s1 + amd
vps

2 ls−1G . s27d

If the first slow ion cyclotron harmonic is in resonancesi.e.,
s=1d, this indicates

kro .
vps

vcf

1
Î1 + am

. s28d

When the resonant slow ion cyclotron harmonic number is 2
si.e., s=2d, this equality occurs at

kr0 . 3 2dgSslow,sÞ1asvps
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1 + am
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, s29d
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2
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1 + am

2pmfc
2

B2

ns
, s31d

can be satisfied because the denominator of Eq.s29d has to
be positive; wherev's=sT/msd1/2 is the perpendicular slow
ion thermal velocity,cA=cVcs/vps=B/ s4pnsmsd1/2 is the
Alfvén velocity, Ef is the fast ion energy, andns is the slow
ion density. Alfvén velocity is required to be low. There is a
thresholdsceilingd on the slow ion temperature and density
sthe external magnetic field and the fast ion energyd. This
Alfvénic condition mainly comes from thek2c2/v2 dielectric
contributed by the wave magnetic field and does not exist in
the electrostatic instabilities. If the resonant slow ion cyclo-
tron harmonic number is larger than twosi.e.,s.2d, Eq.s27d
cannot be satisfied for typical plasma parameters because of
low slow ion temperature as compared with fast ion energy
si.e., l!1d.

Define

a = Q − P2/3, s32d

b = R− PQ/3 + 2P3/27. s33d

A pair of complex conjugate roots exist for the cubic disper-
sion relation in Eq.s17d if f43g

b2

4
+

a3

27
. 0. s34d

Since a is usually negative, the condition becomesb2/4
. ua3/27u. This condition can be satisfied ifQ is also small;
that is, BD+C<0. Thus, atP.0 and Q.0, the real and
imaginary parts of the wave frequency at the maximum
growth rate, respectively, aref43g

vr . ,vcf +
1

2
Î3 CD

A
s35d

.,vcfH1 +
1

2
Fvpf

2 vcf
2

k4c4 dgs1 + amdkk2r2fJ,8skrdg2lG1/3J ,

s36d

vi,max.
Î3

2
Î3 RS1 +

a

3b2/3D s37d

.
Î3

2
Î3 CD

A
s38d

.
Î3

2
,vcfFvpf

2 vcf
2

k4c4 dgs1 + amdkk2r2fJ,8skrdg2lG1/3

. s39d

The wave frequency is slightly larger than the harmonic cy-
clotron frequency of fast ions and smaller than that of slow
ions. Because the cubic correction terma/b2/3.Q/R2/3 at
P.0, a positive snegatived Q will slightly increase sde-
creasesd the maximum growth rate and the frequency mis-
match between the wave and the fast ion cyclotron harmonic.
The peak growth rate is proportional to the cubic root of the
frequency mismatch and thus the relativistic factorsi.e., g
−1d. The value of the cubic root can be not small even the
relativistic factor is very small. The peak growth rate is also
proportional to the cubic root of the fast ion density, the
frequency mismatch between the fast and slow ions, and the
instability driving termC from the fast ions, and is inversely
proportional to the nonresonant plasma dielectricA si.e., the
plasma inertiad, as in the electrostatic instability. However, in
contrast to that of the cubic relativistic electrostatic ion cy-
clotron instability f23,28g, both the maximum growth rate
and the frequency mismatch between the wave and the fast
ion depend on the derivative of Bessel function. Further-
more, the −k2c2/v2 dielectric can make the absolute value of
A large and thus the growth rate smaller. Following is our
explanation. This is contributed by the wave magnetic field.
The energy of low-frequency electromagnetic wave is mostly
in the wave magnetic field; but only electric field can change
the energy of ions and its Lorentz factor, that is needed for
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driving the relativistic instability. Higherk means less energy
in the electric field part and thus makes the instability
weaker.

B. Coupled quadratic instability

We are going to analyze the case ofuDu@ uADu, uDu. uv
−,vcfu, and thus uPu@ uv−,vcfu. The wave frequency is
closely resonant with the harmonic cyclotron frequency of
fast ion, while the harmonic slow ion cyclotron acting as an
inertia is still large enough to be involved in the resonance.
These conditions indicate

vps
2

vcf
2

s2ls−1

2ss!
@ Sk2r0

2

2
+ dg o

slow,sÞ1
as

vps
2

vcf
2 Du1 + amu. s40d

If the first slow ion cyclotron harmonic is in resonancesi.e.,
s=1d, it becomes

kr0 !
1

Îu1 + amu
vps

vcf
. s41d

When the resonant slow ion cyclotron harmonic number is 2
si.e., s=2d, the inequality can be rewritten

1

u1 + amu
v's

2

v'0
2

c2

cA
2 −

1

k2c2 o
slow,sÞ1

asvps
2 @ 1. s42d

If the resonant slow ion cyclotron harmonic number is larger
than 2 si.e., s.2d, the conditions40d can not be valid be-
causel!1. Both conditions require higher slow ion density,
weaker magnetic field, and lower fast ion energy, while the
condition s42d also needs higher slow ion temperature.

When the above conditions can be satisfied, the dispersion
relation, Eq.s17d, becomes a quadratic equation of the wave
frequency and both the contributions of fast and slow ions to
the susceptibility remain coupled; that is,

0 = sD + B + ADdsv − ,vcfd2 + sBD + Cdsv − ,vcfd + CD.

s43d

The condition for the coupled quadratic relativistic electro-
magnetic ion cyclotron instability is

sBD + Cd2 − 4sD + B + ADdCD , 0. s44d

SinceD is negative,B is small, andC is positive, a negative
frequency mismatch between the fast and slow ions is also
required.

For the coupled quadratic instability, the real and imagi-
nary parts of the frequency of the most unstable wave are

vr = ,vcf −
BD + C

2sD + B + ADd
< ,vcf, s45d

vi,max=
Î4sD + B + ADdCD − sBD + Cd2

2uD + B + ADu
s46d

.Î CD

D + B + AD
s47d

=,vcfH vpf
2

k2c2

vcf

2,
dgs1 + amdfkk2r2J,−1

2 l + kk2r2J,+1
2 l

− 2,2kJ,
2lgJ1/2

f− sD + B + ADdg−1/2. s48d

The peak growth rate is proportional to the square root of the
driving coefficientC, the harmonic cyclotron frequency mis-
match between the fast and slow ions, and thus the fast ion
density and the relativistic factor. The coefficientA multi-
plied with the frequency mismatch is kept in the denominator
to increase the accuracy of the analytical prediction because
the magnitude of the coefficientA is large. Because both
coefficientsA andD as well as the frequency mismatch are
negative, the denominator correction increases the growth
rate; but, the correction should not be large, otherwise, the
instability becomes the cubic instability.

C. Decoupled quadratic instability

The third parameter regime for possible instabilities is
that the slow ion is too cold for its high harmonic cyclotron
being involved in the resonance. Thus the fast ion drives the
instability by its second-order resonance in a cold plasma.
The conditions areuADu@ uDu, uDu@ uv−,vcfu, and thusuPu
@ uv−,vcfu; that is,

Sk2r0
2

2
+ dg o

slow,sÞ1
as

vps
2

vcf
2 Du1 + amu @

vps
2

vcf
2

s2ls−1

2ss!
. s49d

If the first slow ion cyclotron harmonic is in resonancesi.e.,
s=1d, the inequality becomes

kr0 @
1

Îu1 + amu
vps

vcf
. s50d

When the resonant slow ion cyclotron harmonic number is 2
si.e., s=2d, the inequality can be written as

1 @
1

u1 + amu
v's

2

v'0
2

c2

cA
2 −

1

k2c2 o
slow,sÞ1

asvps
2 . s51d

Both conditions require lower slow ion density, stronger
magnetic field, and higher fast ion energy. The conditions51d
further requires lower slow ion temperature. If the resonant
slow ion cyclotron harmonic number is larger than 2si.e.,
s.2d, the conditions49d can be easily satisfied because of
l!1. If there is no any slow ion cyclotron harmonic in
resonance with the wave and the fast ion harmonic, no con-
dition is needed.

The dispersion relation, Eq.s11d, becomes

Asv − ,vcfd2 + Bsv − ,vcfd + C = 0, s52d

that is in a quadratic form of the wave frequency resonating
with a harmonic fast ion cyclotron frequency while the slow
ions are not involved. The unstable condition of this decou-
pled quadratic instability isB2−4AC,0. SinceC is positive,
A has to be also positive as in the relativistic electrostatic ion
cyclotron instability; but, in the electromagnetic case, the
wave magnetic field contributes a large negative term so that
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the decoupled quadratic instability cannot be driven at high
fast ion cyclotron harmonics. If the cyclotron frequency of
slow ions is larger than the wave frequency that is not reso-
nant with the first cyclotron harmonic of slow ions, the co-
efficient A can be positive when

k2c2

,2vcf
2 , o

slow,sÞ1

vps
2

Vcs
2 − ,2vcf

2 . s53d

The growth rate peaks atB=0. The real and imaginary parts
of the frequency of the most unstable wave for this decou-
pled quadratic instability are

vr < ,vcf, s54d

vi,max<ÎC

A
s55d

<vcfH vpf
2

2k2c2fkk2r2J,−1
2 skrdl + kk2r2J,+1

2 skrdl

− 2,2kJ,
2skrdlgJ1/2

3F1 +
vpe

2

vce
2 + o

slow,sÞ1

vps
2

Vcs
2 − ,2vcf

2 −
k2c2

,2vcf
2 G−1/2

.

s56d

When the nonresonant plasma dielectricA si.e., the plasma
inertiad is close to zero, the growth rate of the decoupled
quadratic relativistic electromagnetic ion cyclotron instabil-
ity can be large. The growth rate is proportional to the square
root of the fast ion density.

IV. NUMERICAL STUDIES

To illuminate the characteristics of the relativistic electro-
magnetic ion cyclotron instabilities, we will study numeri-
cally the dispersion relation given in Eq.s4d. The numerical
results will be compared with those obtained from the ana-
lytical theory. Without loss of generality, cases with plasma
parameters being typical in laboratory devices and the scal-
ing laws of the instabilities will be investigated.

Both the cubic and coupled quadratic instabilities require
a negative frequency mismatch. Proton has a nucleon with
one positive charge and its rest mass is 1836.15me. Since
proton mass is defined as unity, the normalized mass deficit
per nucleon of proton is zerosi.e., dmp=0d. Deuteron has
two nucleons and one positive charge with its rest mass be-
ing 3670.48me so that the normalized mass deficit per
nucleon of deuteron isdmd.0.000 496. The fast protons
produced by fusion reaction of thermal deuterons are isotro-
pically distributed in momentum space with an energy of
3.02 MeV so that its Lorentz factor isgp.1.003 22. Thus
the frequency mismatch for the fast 3.02-MeV protons in
thermal deuterons isD=−0.003 71,vcp, that can satisfy the
instabilities’ requirement. Thea particle has four nucleons
and two positive charges with its rest mass being 7294.30me
so that the normalized mass deficit per nucleon of alpha par-

ticle is dma.0.006 85. For the frequency mismatch of fast
alpha particles in thermal deuterons being negative, it re-
quires the Lorentz factor of the alpha particles larger than
1.006 35; that is, the energy of the alpha particles has to be
larger than 23.7 MeV. Since the fast alpha particles produced
by the fusion reactions of thermal deuterons and tritons have
the energy of only 3.5 MeV, they cannot drive the coupled
relativistic electromagnetic ion cyclotron instabilities. Both
the fast protons and the fast alphas in thermal deuterons can-
not satisfy Eq.s53d to excite the decoupled quadratic insta-
bility as in contrast to the electrostatic casef23,27–29g espe-
cially at high harmonics.

A. Typical plasma parameters

We will consider fast 3.02-MeV protons, that are isotro-
pically distributed in momentum space, in a thermal plasma
of deuterons and neutralizing electrons. The external mag-
netic field is B0=3 T. The thermal deuteron density isnd
=531013 cm−3. The deuteron temperature isT=10 keV. The
fast proton density isnp=53109 cm−3; that is, the density
ratio of the fast protons and the thermal deuterons isnp/nd
=0.0001. Thus the corresponding plasma parameters are
the deuteron plasma frequencyvpd=6.583109 rad/s, the
deuteron cyclotron frequencyvcd=1.437 543108 rad/s, the
fast proton plasma frequencyvpp=9.293107 rad/s, the
relativistic fast proton cyclotron frequency vcp
=2.864 433108 rad/s, the electron plasma frequencyvpe
=3.9931011 rad/s, the electron cyclotron frequencyvce
=5.2831011 rad/s, the maximum gyroradius of the fast pro-
tons r0=8.4 cm, and the gyroradius of a deuteron with the
perpendicular thermal velocityrs=0.482 cm. Also, am
=0.154 andas=1.34 s1.07d for ,=1 s2d. Since the deuteron
cyclotron frequency is about half of the proton cyclotron
frequency, the resonant cyclotron harmonic number of the
deuterons is twice that of the fast protons.

Figure 1 shows the spectrums of the growth rate and the
real frequency of the electromagnetic ion cyclotron wave,

FIG. 1. sColor onlined The normalized growth ratevi /vcf sthe
solid lined and the residue of the normalized real frequency
vr /vcf−1 sthe dash lined vs the normalized wave numberkr0 for
the typical plasma parameters case of the electromagnetic ion cy-
clotron wave resonating with the first proton harmonic and the sec-
ond deuteron harmonic.
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that is resonant with first proton harmonic and second deu-
teron harmonic. Both are normalized by the fast proton cy-
clotron frequency, while the normalized real frequency is
also deducted by the harmonic numbersand will be hence-
forth called as the residue of the normalized real frequencyd.
There are two peaks in this growth rate spectrum. Both peaks
occurs near the peaks of the driving parameterR and the
zeros of the parameterP as shown on Figs. 2 and 3, respec-
tively; these are the characteristics of the maximum growth
rate of the cubic instability as indicated in the analysis of
previous section. The locations of correspondingR peaks are
a little lower than those of the instability driving termC
contributed by the fast ion second-order resonance because
the absolute value of the nonresonant plasma dielectricA is
smaller at higher wave phase velocitysi.e., lowerkd as indi-
cated in Eq.s21d. The first ssecondd growth rate peak is at
kr0=3.68s7.19d, that is a little higher than the corresponding
driving parameterR peak atkr0=3.48s6.93d. This shifting is
due to the weakening of the instability by a negative coeffi-
cient a as indicated in Eq.s37d while the absolute value of
the coefficienta increases with lowerkr0 at the unstable

regimes as indicated in Fig. 4, where the variation of the
parametersQ andP are determined by the resonant harmon-
ics of the fast and slow ions, respectively. The normalized
peak growth rate atkr0=3.68 s7.19d as shown on Fig. 1 is
3.40310−4 s1.98310−4d, that is in excellent agreement with
3.34310−4 s1.98310−4d as predicted by the analytical result
in Eq. s37d. Equations29d predicts that the peak growth rate
occurs atkr0=2.67, while the numerical result iskr0=3.68.
The residue of the normalized real frequency is 1.97310−4

s1.27310−4d so that the ratio of the peak growth rate and the
residue of the real frequency is 1.73s1.56d that is also in
excellentsgoodd agreement with the theoretical prediction of
Î3 for the cubic instability. Thus we conclude that the un-
stable growth rate spectrum is caused by the cubic relativistic
electromagnetic ion cyclotron instability.

B. Slow ion temperature

If the temperature of the thermal deuterons is increased,
the absolute value of the resonant slow ion dielectric coeffi-
cient D is also increased as shown on Fig. 5, while the co-

FIG. 5. sColor onlined The normalized coefficientD /vcf of the
thermal deuterium temperature being 10, 12, 14, 16, and 20 keV vs
the normalized wave numberkr0.

FIG. 2. sColor onlined The normalized parameterR/vcf
3 sthe

solid lined and coefficientC/vcf
2 sthe dash lined vs the normalized

wave numberkr0.

FIG. 3. sColor onlined The normalized parameterP/vcf of the
thermal deuterium temperature being 10, 12, 14, 16, and 20 keV vs
the normalized wave numberkr0.

FIG. 4. sColor onlined The normalized parametersa/vcf
2 ,

−P2/3vcf
2 , andQ/vcf

2 vs the normalized wave numberkr0.
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efficientsA, B, andC remain the same. From Eq.s18d, we
know that the parameterP is increased as also indicated on
Fig. 3 and thus the wave number of firstssecondd P=0 cor-
responding to the firstssecondd growth rate peak moves to-
ward a smallerslargerd value. This moving of theP=0 points
shifts the firstssecondd growth rate peak as shown on Fig. 6,
that also indicates the decreasing of the growth rate peaks.
Two factors are responsible for this decreasing. The first is
the corresponding driving parameterR becomes smaller as
shown in Fig. 2 because the cubic root ofR with a correction
terma/ s3b2/3d decides the growth rate of the cubic instability
as shown in Eq.s37d. The other factor is the negative correc-
tion term. The higher the slow ion temperature and the pa-
rameterP, the higher the absolute value of the parametera
as shown in Fig. 7; while Fig. 8 shows that the parameterb
only increases moderately because the first termsi.e., the
driving parameterRd of b in Eq. s33d decreases and both the
second and third terms increase. Therefore the correction
term becomes large as shown in Fig. 9.

We shall consider the possibility of the coupled quadratic
instability because the cubic correction term becomes large.

The increase of the resonant slow ion dielectric coefficientD
with the slow ion temperature also indicates the same possi-
bility. The first term of conditions42d is proportional to the
slow ion temperature so that this condition can be satisfied if
the slow ion temperature is high enough. Figure 10 shows
the relation of the peak growth rates and the slow ion tem-
perature. AtT=10 keV, the peak growth rate fits very well
with the analytical prediction of the cubic instability while
the prediction of the coupled quadratic instability is far too
high. When the slow ion temperature is 15 keV and higher,
the analytical prediction of the quadratic instability fits well
with the peak growth rate calculated numerically. But, the
cubic instability prediction is not. In other words, the same
instability peak has transited from cubic to quadratic during
the increasing of the slow ion temperature. It is also interest-
ing to note that the wave numbers of the quadratic growth
rate peaks remain almost constant as shown in Fig. 6. Equa-
tion s48d indicates that the peak growth rate is decreased with
the increase ofD, that is proportional to thess−1d /2 power
of the slow ion temperature. This explains that the peaks
decrease with higher slow ion temperature as shown in
Fig. 6.

FIG. 6. sColor onlined The normalized growth ratevi /vcf of the
thermal deuterium temperature being 10, 12, 14, 16, and 20 keV vs
the normalized wave numberkr0.

FIG. 7. sColor onlined The normalized parametera/vcf
2 of the

thermal deuterium temperature being 10, 12, 14, 16, and 20 keV vs
the normalized wave numberkr0.

FIG. 8. sColor onlined The normalized parameterb/vcf
3 of the

thermal deuterium temperature being 10, 12, 14, 16, and 20 keV vs
the normalized wave numberkr0.

FIG. 9. sColor onlined The cubic correction terma/3b2/3 of the
thermal deuterium temperature being 10, 12, 14, 16, and 20 keV vs
the normalized wave numberkr0.
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When the slow ion temperature is higher than 13.8 keV, a
new instability branch appears and fits well with the cubic
instability prediction, as shown in Fig. 10. This new instabil-
ity branch corresponds to the third growth rate peaks atkr0
ø2 of Fig. 6. As we discussed earlier, the wave number of
the firstP=0 moves fromkr0.3.24 to that regime when the
slow ion temperature is increased. Figure 4 shows that the
parameterQ that is independent of the slow ion temperature
is close to zero at 1.5,kr0,2 regime. Since both conditions
sP.0 andQ.0d are satisfied and the fitting is good, it is
concluded that the cubic instability is responsible for this
third peak and thus the new instability branch. The higher is
the slow ion temperature; the lower is the wave number of
the parameterP=0 and the growth rate peak, and the higher
is the peak growth rate because the driving parameterR in-
creases when the normalized wave numberkr0 is smaller
than 2 as shown in Fig. 2.

Consider the effect of decreasing the slow ion tempera-
ture, instead of increasing it. For thes=2 case studied here,
the cubic instability has a requirement on the plasma param-
eter for the instability to occur. The Alfvénic conditions31d
can be rewritten in centimeter-gram-second system units as
sT/Efd.122B2/ns. For the plasma parameters studied, the
slow ion temperature of 10 keV is high enough to satisfy the
Alfvénic condition. But, if the slow ion temperature is lower
than 6.64 keV, this Alfvénic condition can be no longer sat-
isfied. This threshold of the slow ion temperature is consis-
tent with the numerical result shown in Fig. 10.

C. Slow ion density

We are going to study the effects of changing the slow ion
density. The magnitude of the resonant dielectric of slow
ions si.e., the coefficientuDud increases with the slow ion
density. This shall have the similar effects caused by the slow
ion temperature. In addition, the magnitude of the coefficient
of the nonresonant plasma dielectricsuAud will also increase.

At the regime of small wave number, both the coefficients
are linearly dependent on the slow ion density so that the
parameterP remains almost unchanged. When the wave
number is not small, the higher is the slow ion density, the
higher is the parameterP as shown in Fig. 11. This moves
the firstP=0 to a lower wave number, but this movement is
smaller as compared with the large magnitude increase ofP
and with that in the previous slow ion temperature case. The
resultant growth rate spectrums are similar to those in the
previous case and are shown in Fig. 12. When the slow ion
density is increased, due to the coefficientD being more
negative, the first growth rate peak decreases, and its corre-
sponding wave number moves lower and then remains al-
most unchanged.

Figure 13 shows the peak growth rates obtained from the
numerical simulation and analytical results for different slow
ion densities. Atns=531013 cm−3, the growth rate of the
first peak fits well with the prediction of the cubic instability.
When the slow ion density has doubled, the first growth rate
peak belongs to the coupled quadratic instability. Further-
more, a new instability branch begins to appear atns

FIG. 10. sColor onlined The normalized growth ratevi,max/vcf

of the first and third peaks vs the slow ion temperature. The wave
numbers corresponding to the peaks are substituted into the analyti-
cal formulas Eqs.s48d, s39d, and s37d of the coupled quadratic
instability, the cubic instability without and with correction term
a/3b2/3, respectively. Only the last two are shown for the third
peak.

FIG. 11. sColor onlined The normalized parameterP/vcf of the
thermal ion density being 531013, 631013, 131014, 231014, and
331014 cm−3 vs the normalized wave numberkr0.

FIG. 12. sColor onlined The normalized growth ratevi /vcf of
the thermal ion density being 531013, 631013, 131014, 231014,
and 331014 cm−3 vs the normalized wave numberkr0.
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=131014 cm−3, that corresponds to the third peak nearkr0
=2 in Fig. 12. As in the slow ion temperature case, this third
peak occurs where both the parametersP andQ are close to
zero. However, there are two notable differences. The first is
that the movement of this third peak toward a smaller wave
number is much slower as shown in Fig. 12, because the
movement of the wave number corresponding toP=0 to-
ward a smaller value is also much slower, as discussed ear-
lier. The other difference is that the amplitude of this third
peak decreases with the increase of the slow ion density. As
shown in Eq.s37d, the peak growth rate of the cubic insta-
bility is proportional to the cubic root of the driving param-
eter R, whereR=CD /A. Because the absolute value of the
nonresonant plasma dielectricA increases with the slow ion
density, the driving parameterR decreases as shown in Fig.
14 so as the third peak growth rate. The Alfvénic condition
s31d indicates that there is a threshold of the slow ion density
for the cubic instability. The analytical threshold isns
=3.3231013 cm−3, that is consistent with the numerical
threshold shown in Fig. 13.

D. Magnetic field

The effects of varying magnetic field on the relativistic
electromagnetic ion cyclotron instabilities are investigated.
The reduction of the magnetic field decreases the ion cyclo-
tron frequency and thus the wave frequency. The nonreso-
nant plasma dielectricA is inversely proportional to the
square of the magnetic field for the regime of low wave
number and remains almost unchanged for high wave num-
ber. The normalized coefficientsB/vcf, C/vcf

2 , and D /vcf
are all inversely proportional to the square of the magnetic
field for a givenk2r2; while the normalized frequency mis-
matchD /vcf remains constant. Both the increase of the co-
efficientsA andD /vcf due to the lower magnetic field have
similar effects as in the case of increasing the slow ion den-
sity. The normalized parameterP/vcf remains almost un-
changed at the low wave number regime and increases at the
high wave number regime; this moves the point ofP=0 to-
ward a lower wave number.

Figure 15 shows that the first growth rate peak also moves
to a lower wave number with a smaller growth rate when the
magnetic field is reduced. The decrease of the peak growth
rate is due to the competition of two factors. The first is the
increase of the normalized driving parameterR/vcf

3 for a
weaker magnetic field as shown in Fig. 16. The other is that
the correction term of Eq.s37d on the cubic instability be-
comes large and significantly reduces the peak growth rate,
as shown in Fig. 17. Furthermore, when the cubic correction
is large at low magnetic field, the predictions of the coupled
quadratic instability agrees well with the numerical results.
For the coupled quadratic instability, the first growth rate
peak is located at a fixed wave number as shown in Fig. 15,
which also shows that a third peak appears when the mag-
netic field is equal to or lower than 2 T. Due to the move-
ment ofP=0, this third growth rate peak moves to a smaller
wave number toward whereQ.0. The third peak growth
rate becomes higher because the normalized driving param-
eter R/vcf

3 increases for a lower wave number. This new
instability branch agrees well with the prediction of the cubic
instability with or without the correction term as indicated in

FIG. 13. sColor onlined The normalized growth ratevi,max/vcf

of the first and third peaks vs the slow ion density. The wave num-
bers corresponding to the peaks are substituted into the analytical
formulas Eqs.s48d, s39d, ands37d of the coupled quadratic instabil-
ity, the cubic instability without and with correction terma/3b2/3,
respectively. Only the last two are shown for the third peak.

FIG. 14. sColor onlined The normalized parameterR/vcf
3 of the

thermal ion density being 531013, 631013, 131014, 231014, and
331014 cm−3 vs the normalized wave numberkr0.

FIG. 15. sColor onlined The normalized growth ratevi /vcf of
the magnetic field being 3.0, 2.5, 2.0, 1.5, and 1.0 T vs the normal-
ized wave numberkr0.
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Fig. 17. The numerical result shows that there is no instabil-
ity as the magnetic fieldB is larger than 3.55 T, while the
analytical prediction of the Alfvénic behavior is 3.68 T; the
agreement is good.

E. Fast ion density

The scalings of the peak growth rates on the fast ion den-
sity are studied. For the cubic instability, the analytical peak
growth rate is scaled as the cubic root of the fast ion density
as indicated in Eq.s39d; while it is the square root for the
coupled quadratic instability as shown in Eq.s48d. For both
the cubic and the coupled quadratic instabilities to be shown
on one set of data, we have changed the plasma parameters
with a higher slow ion density of 231014 cm−3. Figure 18
shows the growth rates of the first and third peaks obtained
numerically and those analytically predicted by the cubic and
the coupled quadratic instabilities for different fast ion den-

sities. The first and the third growth rate peaks agree very
well with the coupled quadratic and cubic predictions, re-
spectively. The normalized peak growth rate is scaled as the
0.485s0.476d and 0.347s0.348d power of the fast ion density
for the coupled quadratic instability and the cubic instability
from the numerical calculationsanalytical predictiond, re-
spectively.

V. DISCUSSION AND SUMMARY

The relativistic electromagnetic ion cyclotron instabilities
are reactive. The peak growth rate is proportional to the cu-
bic or square root of fast ion density, depending on the in-
stability coupling mechanisms. Because fast ion density in
typical plasmas is small, these scalings make the relativistic
instabilities more important than the resistive electromag-
netic ion cyclotron instability driven by classical inversed
Landau dampingf39,40g. The growth rates for typical
plasma parameters are much larger than those of the classical
resistive instabilityf39,40g. Thus the contribution from the
inversed Landau damping, that depends on specific momen-
tum profile, is neglected in our studies for focusing on the
interesting characteristics of the instabilities. Nevertheless, it
is straightforward to include this effect when it is necessary
and the momentum profile is given.

Both the cubic and coupled quadratic instabilities require
a negative frequency mismatch, while the decoupled qua-
dratic instability does not have this requirement. Consider a
fast ion with its harmonic cyclotron frequency lower than the
wave frequency. When the fast ion loses energy to the wave,
its harmonic cyclotron frequency will increase. The reverse
is true for a slow ion. In both cases, their harmonic cyclotron
frequencies are closer to the wave frequency. Therefore the
resonance interactions are enhanced. Consider the collective
effects. The second-order resonance of the fast ion contrib-
utes a positive dielectric for both sides of the wave frequency
being higher or lower than the harmonic fast ion cyclotron

FIG. 16. sColor onlined The normalized parameterR/vcf
3 of the

magnetic field being 3.0, 2.5, 2.0, 1.5, and 1.0 T vs the normalized
wave numberkr0.

FIG. 17. sColor onlined The normalized growth ratevi,max/vcf

of the first and third peaks vs the magnetic field. For the analytical
predictions of the coupled quadratic instability, the cubic instability
without and with correction terma/3b2/3, the wave numbers corre-
sponding to the peaks are substituted into Eqs.s48d, s39d, ands37d,
respectively. Only the last two are shown for the third peak.

FIG. 18. sColor onlined The normalized growth ratevi,max/vcf

of the first and third peaks vs the fast ion density for the plasma
parameters with a higher slow ion density of 231014 cm−3. For the
analytical predictions of the coupled quadratic instability and the
cubic instability, the wave numbers corresponding to the peaks are
substituted into Eqs.s48d and s39d, respectively.
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frequency. As also indicated in Eq.s11d, the first-order reso-
nance of slow ion gives a positivesnegatived dielectric for
the wave frequency being lowershigherd than the harmonic
slow ion cyclotron frequency. A pair of complex conjugate
roots is possible only when both resonant dielectrics are
positive. Thus the instabilities require that the harmonic slow
ion cyclotron frequency is larger than that of the fast ion and
the wave frequency is in between.

The cubic and quadratic powers of the peak growth rates
of the cubic and coupled quadratic instabilities, respectively,
depend on the coefficientC of the fast ion driving second-
order resonance and the frequency mismatch. The higher the
driving, the higher the peak growth rate as expected. The
higher frequency mismatch indicates larger room for the dif-
ference between the wave frequency and the harmonic fast
ion cyclotron frequency, because the wave frequency is be-
tween the harmonic cyclotron frequencies of fast and slow
ions. On the other hand, the cubic and quadratic powers of
the peak growth rates are inversely proportional to the iner-
tias, that is, the nonresonant plasma dielectricA and the reso-
nant slow ions dielectric coefficientD, respectively. The qua-
dratic power of the peak growth rate of the decoupled
quadratic instability is proportional to the driving, is in-
versely proportional to the nonresonant plasma dielectric, but
does not depend on the frequency mismatch.

The instabilities studied here have interesting characteris-
tics because the nonresonant plasma dielectricsi.e., the
plasma inertiad is usually a large negative number due to the
wave magnetic field effect and the instability driving term is
proportional to the square of the derivative of the Bessel
function instead of the Bessel function for the relativistic
electrostatic ion cyclotron instabilities. The latter shifts the
wave number location of the growth rate peak while the
former has profound effects. It ruins the decoupled quadratic
instability because a positive nonresonant plasma dielectric
is needed for this instability. For the cubic and quadratic
instabilities due to the coupling of the fast and slow ion
cyclotron harmonics, the wave magnetic field causes the un-
stable conditions to require the resonant slow ion cyclotron
harmonic number being 1 or 2. Thus high harmonics are
stable. For the coupled quadratic instability, the wave mag-
netic field can slightly increase the growth rate because it can
reduce the dielectric of the resonant harmonic slow ion cy-
clotron. But, for the cubic instability, the wave magnetic field
decreases the peak growth rate because it is inversely pro-
portional to the cubic root of the nonresonant plasma dielec-
tric A si.e., the plasma inertiad. The contribution of the wave
magnetic field also imposes a thresholdsceilingd on the slow
ion temperature and densitysthe external magnetic field and
the fast ion energyd for the cubic instability. The Alfvén ve-
locity is required to be low. This Alfvénic behavior is impor-
tant for application in experiments. The Alfvénic behavior
and the difference between fast protons and alphas in thermal
deuteronsse.g., the first proton harmonic is most unstable
and the first alpha harmonic is stabled are consistent with the
experimental measurements of ion cyclotron emissions
f34–38g. For a complete explanation of the ion cyclotron
emissions observed in experiments, the coupling of the elec-
tromagnetic and electrostatic modes for relativistic ion cyclo-
tron instabilities is being studied.

The instability transition never discovered before is inter-
esting and may be important for application. As we under-
stand from previous cyclotron instability studiesf1,3g with
f23,28g and withoutf41g relativistic effect, cubic and qua-
dratic instabilities usually have different growth rate spectra
at different wave vectors, different harmonics, and/or distinct
plasma parameters. Even when their peaks are close to each
other, they are separated. One may dominate for a set of
plasma parameters. When the plasma parameters are
changed, the growth rate of the dominated one may decrease
while the other may increase and even become dominant.
After all, they are two separated peaks and there is a valley
in the growth rate spectrum between them. Also, the resultant
particle dynamics and the nonlinear saturation mechanisms
are very different for the cubic and quadratic instabilities.
However, the relativistic electromagnetic ion cyclotron insta-
bilities studied here for fast protons in thermal deuterons
have the cubic and quadratic instabilities, representing differ-
ent resonance coupling mechanisms, at the same growth rate
peak for different plasma parameters. By moderately chang-
ing plasma parameters, the same growth rate peak transits
from the cubic instability to the quadratic instability. The
transition parameters are related to the thresholdsor ceilingd
condition of the Alfvénic behavior. Furthermore, while the
transition occurs, a different cubic instability branch appears
and coexists with the quadratic branch. This cubic branch is
different than the original cubic branch. The instability tran-
sition may be important for applications, since the nonlinear
saturation, the resultant particle dynamics, and the instability
characteristicsse.g., absolute or convectived depend on the
resonance coupling mechanism and the scaling and detail of
the growth rate spectrum.

There are a few issues not studied here. The nonlinear
saturation mechanisms determine the saturation level of the
wave growth and the resultant fast ion dynamics and profiles.
The absolute or convective growth of the instabilities is im-
portant when plasmas are not uniform. Plasma devices usu-
ally have a nonuniform confining magnetic field. The drift
motion of the fast ions associated with the nonuniform mag-
netic field would move the fast ions in and out of the inter-
action regimes. The discussionsf28g on these issues for the
relativistic electrostatic ion cyclotron instabilities may be ap-
plicable to the instabilities studied here; however, these are
not within the scope of this paper.

In summary, the physics of relativistic electromagnetic
ion cyclotron instabilities have been studied. The cubic and
quadratic instabilities from the coupling of second-order fast
and first-order slow ion cyclotron resonances require a nega-
tive harmonic cyclotron frequency mismatch, as demanded
by resonance enhancement and positive resonant dielectrics
in the dispersion relation. Their peak growth rates are pro-
portional to the cubic and square roots, respectively, of the
fast ion density and Lorentz factor −1. These scalings make
the relativistic effect more important than the inversed Lan-
dau damping mechanism for driving electromagnetic ion cy-
clotron instability. The wave magnetic field is important to
determine the instabilities’ characteristics and unstable con-
ditions, which are quite different with the relativistic electro-
static ion cyclotron instabilities. The peak growth rates and
their locations as well as the thresholdsceilingd of the slow
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ion density and temperaturesthe external magnetic fieldd are
obtained analytically and compared in good agreement with
those from numerical calculations. This Alfvénic behavior
found here is mainly due to the wave magnetic field and is
important for application in experiments. When the slow ion
density or temperaturesthe external magnetic field or the fast
ion energyd is about two timesshalfd the thresholdsceilingd,
the same growth rate peak transits from the cubic instability
to the coupled quadratic instability and a different cubic in-
stability branch appears. This instability transition is interest-
ing and remains to be verified by experiments. The coupling

of the relativistic electromagnetic and electrostatic ion cyclo-
tron instabilities deserves further studies. While the physics
studied are emphasized, in additional to in the laboratory, the
relativistic electromagnetic ion cyclotron instabilities may
occur in nature and particularly in some astrophysical radia-
tion sources.
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